Telegram Group & Telegram Channel
🎯 Фишка инструмента: топ-5 библиотек Python для EDA (разведочного анализа данных)

EDA (Exploratory Data Analysis) — это важнейший этап анализа данных, помогающий понять структуру, закономерности и аномалии в данных перед моделированием. Ниже — библиотеки, которые максимально ускоряют и упрощают этот процесс.

1️⃣ pandas\_profiling
import pandas_profiling  
report = pandas_profiling.ProfileReport(df)
report.to_file("eda_report.html")


🟪 Генерирует полноценный HTML-отчёт по DataFrame.
🟪 Показывает распределения, корреляции, пропущенные значения, типы данных и многое другое.
🟪 Отличный способ получить обзор по данным всего за пару строк кода.

2️⃣ Sweetviz
import sweetviz  
report = sweetviz.analyze(df)
report.show_html("sweetviz_report.html")


🟪 Создаёт красивый визуальный EDA-отчёт.
🟪 Можно сравнивать два набора данных (например, обучающую и тестовую выборки).
🟪 Очень полезен для выявления смещений и различий между выборками.

3️⃣ D-Tale
import dtale  
dtale.show(df)


🟪 Открывает DataFrame в веб-интерфейсе прямо в браузере.
🟪 Позволяет фильтровать, сортировать, строить графики и смотреть статистику без написания кода.
🟪 Идеален для быстрой визуальной разведки данных.

4️⃣ Skimpy
import skimpy  
skimpy.clean_columns(df)
skimpy.scan(df)


🟪 Очищает названия столбцов (удаляет пробелы, приводит к удобному формату).
🟪 Показывает компактную сводку: типы, пропуски, уникальные значения и т.д.
🟪 Очень лёгкая и быстрая библиотека — минимализм и эффективность.

5️⃣ AutoViz
from autoviz.AutoViz_Class import AutoViz_Class  
AV = AutoViz_Class()
AV.AutoViz("your_file.csv")


🟪 Автоматически определяет тип переменных и строит графики: распределения, тренды, связи между переменными.
🟪 Работает напрямую с CSV и Pandas DataFrame.
🟪 Подходит для быстрого первичного анализа без ручного выбора визуализаций.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6411
Create:
Last Update:

🎯 Фишка инструмента: топ-5 библиотек Python для EDA (разведочного анализа данных)

EDA (Exploratory Data Analysis) — это важнейший этап анализа данных, помогающий понять структуру, закономерности и аномалии в данных перед моделированием. Ниже — библиотеки, которые максимально ускоряют и упрощают этот процесс.

1️⃣ pandas\_profiling

import pandas_profiling  
report = pandas_profiling.ProfileReport(df)
report.to_file("eda_report.html")


🟪 Генерирует полноценный HTML-отчёт по DataFrame.
🟪 Показывает распределения, корреляции, пропущенные значения, типы данных и многое другое.
🟪 Отличный способ получить обзор по данным всего за пару строк кода.

2️⃣ Sweetviz
import sweetviz  
report = sweetviz.analyze(df)
report.show_html("sweetviz_report.html")


🟪 Создаёт красивый визуальный EDA-отчёт.
🟪 Можно сравнивать два набора данных (например, обучающую и тестовую выборки).
🟪 Очень полезен для выявления смещений и различий между выборками.

3️⃣ D-Tale
import dtale  
dtale.show(df)


🟪 Открывает DataFrame в веб-интерфейсе прямо в браузере.
🟪 Позволяет фильтровать, сортировать, строить графики и смотреть статистику без написания кода.
🟪 Идеален для быстрой визуальной разведки данных.

4️⃣ Skimpy
import skimpy  
skimpy.clean_columns(df)
skimpy.scan(df)


🟪 Очищает названия столбцов (удаляет пробелы, приводит к удобному формату).
🟪 Показывает компактную сводку: типы, пропуски, уникальные значения и т.д.
🟪 Очень лёгкая и быстрая библиотека — минимализм и эффективность.

5️⃣ AutoViz
from autoviz.AutoViz_Class import AutoViz_Class  
AV = AutoViz_Class()
AV.AutoViz("your_file.csv")


🟪 Автоматически определяет тип переменных и строит графики: распределения, тренды, связи между переменными.
🟪 Работает напрямую с CSV и Pandas DataFrame.
🟪 Подходит для быстрого первичного анализа без ручного выбора визуализаций.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/dsproglib/6411

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

Telegram and Signal Havens for Right-Wing Extremists

Since the violent storming of Capitol Hill and subsequent ban of former U.S. President Donald Trump from Facebook and Twitter, the removal of Parler from Amazon’s servers, and the de-platforming of incendiary right-wing content, messaging services Telegram and Signal have seen a deluge of new users. In January alone, Telegram reported 90 million new accounts. Its founder, Pavel Durov, described this as “the largest digital migration in human history.” Signal reportedly doubled its user base to 40 million people and became the most downloaded app in 70 countries. The two services rely on encryption to protect the privacy of user communication, which has made them popular with protesters seeking to conceal their identities against repressive governments in places like Belarus, Hong Kong, and Iran. But the same encryption technology has also made them a favored communication tool for criminals and terrorist groups, including al Qaeda and the Islamic State.

Among the actives, Ascendas REIT sank 0.64 percent, while CapitaLand Integrated Commercial Trust plummeted 1.42 percent, City Developments plunged 1.12 percent, Dairy Farm International tumbled 0.86 percent, DBS Group skidded 0.68 percent, Genting Singapore retreated 0.67 percent, Hongkong Land climbed 1.30 percent, Mapletree Commercial Trust lost 0.47 percent, Mapletree Logistics Trust tanked 0.95 percent, Oversea-Chinese Banking Corporation dropped 0.61 percent, SATS rose 0.24 percent, SembCorp Industries shed 0.54 percent, Singapore Airlines surrendered 0.79 percent, Singapore Exchange slid 0.30 percent, Singapore Press Holdings declined 1.03 percent, Singapore Technologies Engineering dipped 0.26 percent, SingTel advanced 0.81 percent, United Overseas Bank fell 0.39 percent, Wilmar International eased 0.24 percent, Yangzijiang Shipbuilding jumped 1.42 percent and Keppel Corp, Thai Beverage, CapitaLand and Comfort DelGro were unchanged.

Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from ye


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA